If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49m^2-3=0
a = 49; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·49·(-3)
Δ = 588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{588}=\sqrt{196*3}=\sqrt{196}*\sqrt{3}=14\sqrt{3}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{3}}{2*49}=\frac{0-14\sqrt{3}}{98} =-\frac{14\sqrt{3}}{98} =-\frac{\sqrt{3}}{7} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{3}}{2*49}=\frac{0+14\sqrt{3}}{98} =\frac{14\sqrt{3}}{98} =\frac{\sqrt{3}}{7} $
| 500=50/x | | 8x=12/20 | | 6x+2x+11-3x-3=53 | | 2.5x+10=×-0.5 | | 2/3x-1/2=4/3x+1/2 | | 10.5x-14=3 | | 5=g-61/6 | | 379+x=-458 | | 9(x-1)=15-3x | | 2.2x+15.9=-11.5 | | -8x+9=22x+15 | | 5+2b=-1 | | 8=3z-10 | | 2(f-17)+2f=3f-7(f+2) | | x+466=1106 | | -3(r-7)=-24 | | -3x-7=-5x-8 | | 9(b-90)=27 | | 5=w+1.5. | | 5h=-7 | | c=3.14(24) | | x—-466=1106 | | r-52/4=7 | | -3x+-7=-5x-8 | | k/4-7=-5 | | -48+x=-62 | | 6m+15-13=2m+18 | | b/4+39=44 | | 2=x–3 | | 4(x+3)=-(x-17) | | 9(8x+11)=180 | | -4(x+4)+2=-7.5-(2x+8.9) |